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Abstract— We study a tactical problem integrating production 

planning with order acceptance decisions. We explicitly consider 

the dependency between the workload (and work-in-process 

inventory) and lead times. In the new model, orders are 

accepted/rejected and their processing period is determined. This 

problem is formulated as a mixed integer linear program for 

which two relax-and-fix heuristic solution methods are proposed. 

The first one decomposes the problem based on time periods while 

the second decomposes it based on orders. The performances of 

these heuristics are compared with the performance of a 

commercial solver. The numerical results show that the time-

based relax-and-fix heuristic outperforms the order-based relax-

and-fix heuristic and the solver solution as it yields better 

integrality gaps for much less CPU time. 

Keywords— Production Planning; Order Acceptance; Clearing 

Functions; Load-Dependent Lead Times, Flexible Lead Times; 

Relax-and-Fix, Delivery Time Windows 

I.  INTRODUCTION  

The primary objective of classical production planning 
models is to satisfy customer demands while minimizing 
production costs or maximizing profit. Usually, orders are 
grouped (aggregated) at the tactical level to simplify the 
decision making process. However, it is often important to 
distinguish customer orders for several reasons (See [1] and 
[2]). Firstly, even if the finished good is the same, different 
customers might impose particular conditions on the source of 
raw materials or on the quality control tests to be carried out 
during the manufacturing process of their orders. Secondly, in 
the case of limited capacity, the production planner can only 
satisfy demands partially and consequently has to decide which 
orders to satisfy. 

Even when there is enough capacity it is not necessarily 
interesting to accept orders. Indeed, there are two fundamental 
assumptions in traditional production planning models: (i) the 
production lead times are constant and do not depend on the 
workload, (ii) and in any given period, the shadow price of the 
capacity constraint is equal to zero when there is enough 
capacity (capacity constraint is not binding); this means that the 
cost of adding one unit (or order) to the production stage is zero 
as long as the capacity limit is not reached. As a consequence 
of these assumptions, production planning models try to satisfy 
as many customer orders with known due dates as production 
capacity permits. 

Actually, production lead-times depend on the workload. 
Queuing models have revealed that lead-time increases non-
linearly as the resource utilization approaches 100% [3] [4]. 
Therefore, the more orders are accepted the higher are the 
production lead times, resulting in the possibility of missing 
customer due dates. This means that the planner can be faced 
with situations where production capacity is available but the 
next orders should be rejected in order not to delay some 
already accepted customer orders. 

In addition, even if the unit price the customer is willing to 
pay exceeds the variable production cost and there is enough 
capacity to avoid shortage, the decision whether a customer 
order should be accepted or not is not always straightforward. 
There are two possible arguments to support this fact. The first 
argument has to do with economies of scale. In fact, in the case 
of high fixed or set-up costs it might not be economical to 
satisfy a single order of a small quantity. The order must be 
aggregated with additional orders to justify the production setup 
[5]. The second argument has to do with the workload of the 
production stage. Kefili et al. [6] show that the marginal prices 
of capacitated resources are not necessarily equal to zero when 
the utilization is less than one. This means that even in the case 

Xème Conférence Internationale : Conception et Production Intégrées, CPI 2015,   2-
4 Décembre 2015, Tanger - Maroc. 

Xth International Conference on Integrated Design and Production, CPI 2015, 
December 2-4, 2015, Tangier - Morocco.  



where capacity is available, the revenue from an additional 
order should at least offset the variable production cost plus the 
shadow prices of the capacity constraints that take into account 
workload. 

Based on these arguments, we can conclude that models that 
integrate production planning decisions with load dependent 
lead times and order acceptance decisions have a great potential 
to improve the overall profitability of the firm. Furthermore, by 
allowing due date flexibility, more orders can be accepted 
resulting in higher profits and more reliable delivery dates 
(lower delays). In this research work, we integrate order 
acceptance and production planning decisions in a single 
model, while considering flexible due dates and load dependent 
lead times. The considered problem is formulated as a mixed 
integer linear program (MILP). When the number of orders and 
the number of periods increase, and for certain parameter 
settings it becomes difficult if not impossible to obtain good 
solutions in reasonable computation times. We propose relax-
and-fix heuristics to solve efficiently large instances of the 
problem. 

The remainder of the paper is organized as follows. A 
literature review is presented in Section II. In section III, the 
production planning problem with order acceptance decisions 
and flexible due dates is presented. In section IV, two relax-
and-fix heuristics are presented. Section V presents some 
numerical experiments to evaluate the proposed heuristics. 
Some concluding remarks are presented in Section VI. 

II. LITERATURE REVIEW 

The dependency between resource utilization and lead times 
(or equivalently available capacity) has already been addressed 
to some degree by some authors. Voss and Woodruff [7] 
propose a nonlinear model where the function linking lead time 
to workload is approximated by a piecewise linear function. use 
Clearing functions (CFs) were used by [8], [9], [10], and [11] 
to model the dependency between workload and lead times. 
Several related models are proposed in the recent book by [12]. 
Production planning models with load-dependent lead times are 
reviewed by [2] and [13]. Aouam and Uzsoy [14] compare the 
performance of various production planning models with 
workload-dependent lead times under demand uncertainty. In 
this paper, a CF is used to model the capacity of the production 
stage in order to relate the production workload resulting from 
all accepted orders to the production lead-times. 

Linear programming based production planning models 
typically consider fixed lead times or time lags and represent 
capacity as a fixed upper bound on the number of hours 
available at the resource in a period [7]. However, these lead 
times or time lags are independent of workload. As an 
alternative, load-dependent production planning models with 
clearing functions (CFs) capture the relationship between 
workload and output at a capacitated production resource [9] 
[10] [15]. A CF represents the relationship between the average 
workload of a production resource, usually some measure of 
work in process inventory (WIP), and the average throughput 
of the resource in a planning period. For most capacitated 
production resources subject to congestion, limited capacity 
leads to a CF that is concave and increasing [13]. The CF, 

denoted by 𝑓(. ) that is increasing and concave with 𝑓(0) = 0, 
relates the throughput to the WIP as follows,  

 𝑋𝑡 = 𝑓(�̅�𝑡) ∀𝑡    (1) 

where �̅�𝑡 = 𝑊𝑡−1 +  𝑅𝑡 represents the resource load for period 
t, or the total amount of work that becomes available for 
processing during the period. Following [8] and [11], and for 
tractability reasons, the CF is approximated using an outer 
linearization. In fact, 𝑓(. ) can be approximated by the convex 
hull of a set of affine functions of the form, 

  f̂(W) = mink=1…K{akW + bk}  (2) 

𝑎𝑘 and 𝑏𝑘 are the slope and intercept of segments 𝑘 ∈ {1 … 𝐾} 

Ivanescu et al. [16] consider the order acceptance problem 
in the batch industries where the processing times are uncertain. 
The authors use regression based models in order to determine 
whether there is enough capacity to accept a customer order 
with the due date requested by the customer. Geunes et al. [17] 
consider a production planning problem with order acceptance 
and call it the order selection problem. The uncapacitated case 
is solved using a polynomial time algorithm and they propose a 
Lagrangian relaxation approach for the capacitated case. For a 
more extensive review of order acceptance literature the reader 
is referred to [18]. Aouam and Brahimi [1] present a robust 
model that integrates production planning with load dependent 
lead-times and order acceptance decisions, which considers 
demand uncertainty and where a fraction of the order quantity 
can be accepted. 

The subject of lead time or due date flexibility is directly 
related to demand time windows. The latter are grace periods 
(allowed by the customers) during which the order can be 
delivered without penalty. To the best of our knowledge, the 
first production planning models with demand time windows 
were introduced by [19]. They proposed dynamic programming 
algorithms to solve uncapacitated lot sizing problems with and 
without backlogging. Charnsirisakskul et al. [20] propose an 
order acceptance model where they show the economic benefits 
of lead time flexibility. They solve a capacitated example using 
the commercial solver CPLEX. Merzifonluoğlu and Geunes 
[21] propose a similar model with production setup decisions. 
The uncapacitated case is solved using a dynamic programming 
algorithm, while the authors propose heuristics to solve the 
general case. This stream of work emphasizes the integration of 
order acceptance decisions in production planning decisions to 
take into account economies of scale achieved per setup when 
orders are aggregated. Recently, Brahimi [22] considered the 
issue of integrating order acceptance decisions with due date 
flexibility. He presents two heuristic solutions for the problem: 
a reversals heuristic and a relax-and-fix heuristic based on order 
decomposition. The present paper improves these heuristics and 
presents a new time based relax and fix heuristic that 
outperforms them in terms of integrality gap and CPU times. 
The current work and [22] were combined, extended, and 
submitted to an international journal [23]. 

Relax-and-fix heuristics were applied to different 
production planning problems including the capacitated single 
level multi-item lot sizing problem [24], the multi-level lot 
sizing problem [25], and the lot sizing and scheduling problem 



with parallel machines [26]. Most implementations of relax-
and-fix heuristics in production planning consider partitioning 
the time horizon and forward or backward fixing integer 
variables (ex. [25] and [27]). 

Compared to previous work, our model considers more 
realistic capacity constraints that reflect the dependency 
between workload, affected by the number of accepted orders, 
and production lead times. The models also incorporate flexible 
due dates that allow production smoothing, increase the number 
of accepted orders, and determine reliable due dates. 
Furthermore, two relax and fix heuristics are proposed and 
compared: one decomposes the problem based on time periods 
and the other based on customer orders. The latter heuristic 
incorporates reversals, which are inspired by the sub-tour 
reversals heuristic for the traveling salesman problem [28].  

III. PRODUCTION PLANNING MODEL WITH ORDER ACCEPTANCE, 

LOAD DEPENDENT LEAD TIME AND FLEXIBLE DUE DATES 

The load-dependent production planning model determines 
production decisions to satisfy customer orders and maximize 
the total profit. Each order 𝑖 is characterized by an order size 𝑞𝑖, 
reservation price or marginal revenue 𝜋𝑖, and a lost sales cost 
𝑙𝑖. We allow due date flexibility in our model, i.e., the due date 
required by the customer is given as a set of possible dates 
rather than a fixed date, which leads to a win-win situation for 
the firm and customers. In fact, this flexibility when captured in 
production planning models results in more accepted orders, 
smoother production plans, higher profits, and more reliable 
due dates (lower delays). In this setting, a customer provides a 
time window with earliest delivery date 𝑒𝑖 and a latest delivery 
date 𝑓𝑖. 

For a given order 𝑖, the customer provides a time window 
with earliest delivery date 𝑒𝑖 and a latest delivery date 𝑓𝑖. If the 
order is accepted it can only be delivered in period 𝑡 ∈ [𝑒𝑖 , 𝑓𝑖]. 

The decision variables in the model are, for each period: the 
quantity released 𝑅𝑡, the production level 𝑋𝑡, the Work-In-
Process (WIP) level 𝑊𝑡, and the inventory level 𝐼𝑡. The 
marginal costs are: release cost 𝑟𝑡, processing cost 𝑐𝑡, WIP 
holding cost 𝑤𝑡 , inventory holding cost ℎ𝑡, and backlogging 
cost 𝑝𝑡 . Also, let the binary variable 𝑆𝑖𝑡  such that 𝑆𝑖𝑡 = 1 if 
order i is accepted and to be satisfied in period 𝑡 ∈ [𝑒𝑖 , 𝑓𝑖] and 
𝑆𝑖𝑡 = 0 otherwise. The integrated production planning and 
order acceptance model with flexible due dates can be 
formulated as follows: 

PP-OA-FDD 

Objective function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝐹𝐷𝐷(𝑅𝑡 , 𝑋𝑡 , 𝑊𝑡 , 𝐼𝑡) = 

∑ 𝜋𝑖𝑞𝑖 ∑ 𝑆𝑖𝑡

𝑓𝑖

𝑡=𝑒𝑖𝑖

− 

∑(𝑟𝑡𝑅𝑡 + 𝑐𝑡𝑋𝑡 + 𝑤𝑡𝑊𝑡 + ℎ𝑡𝐼𝑡)

𝑡

− 

 

 

 

 

 

 

 

 ∑ 𝑞𝑖𝑙𝑖 (1 − ∑ 𝑆𝑖𝑡

𝑓𝑖

𝑡=𝑒𝑖

)

𝑖

 

(3) 

Subject to constraints:  

𝑊𝑡 = 𝑊𝑡−1 + 𝑅𝑡 − 𝑋𝑡 ,  

𝑡 = 1, . . . , 𝑇 
(4) 

𝐼𝑡 = 𝐼𝑡−1 + 𝑋𝑡 − ∑ 𝑞𝑖𝑆𝑖𝑡𝑖   

𝑡 = 1, . . . , 𝑇 
(5) 

𝑋𝑡 ≤ 𝑎𝑘(𝑊𝑡−1 + 𝑅𝑡) + 𝑏𝑘 (6) 

       𝑡 = 1, . . . , 𝑇 ∧  𝑘 = 1, . . . , 𝐾  

∑ 𝑆𝑖𝑡
𝑓𝑖
𝑡=𝑒𝑖

≤ 1              𝑖 = 1, . . . , 𝑁 (7) 

𝑅𝑡 , 𝑋𝑡 , 𝑊𝑡 , 𝐼𝑡 , ≥ 0𝑡 = 1, . . . , 𝑇 (8) 

𝑆𝑖𝑡: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡 = 1, … , 𝑇 ∧  
𝑖 = 1, . . . , 𝑁 

(9) 

The objective function in equation (3) maximizes the total 
profit 𝑃𝐹𝐷𝐷  over the planning horizon. Constraints (4) and (5) 
define WIP and finished goods inventory balances, respectively 
for each period. Constraints (6) represent the capacity 
constraints defined by the CF. Constraints (7) ensure that order 
i can only be accepted and satisfied within the customer 
specified time window [𝑒𝑖 , 𝑓𝑖]. Non-negativity and integrality 
constraints are defined by (8) and (9). 

Solving this model using state of the art MILP solvers is not 
efficient for large size problems. Thus, we propose a MILP-
based heuristic to solve it efficiently. 

IV. HEURISTICS FOR SOLVING PP-OA-FDD 

A. General structure of the heuristics 

For problems of realistic sizes, with a large number of 
planning periods and orders, problem PP-OA-FDD is very hard 
to solve in reasonable computational times. This section 
presents two relax-and-fix heuristics to tackle this difficulty. 
The first heuristic decomposes the problem based on time 
periods while the second decomposes the problem based on 
customer orders. In relax-and-fix heuristics, the integer 
variables in a MILP formulation are separated into subsets. The 
heuristic usually proceeds by fixing a subset of variables, 
usually the most important ones, and relaxing the integrality of 
the other variables. Then, it gradually fixes the relaxed variables 
[29] [30]. The only integer/binary variables in PP-OA-FDD 
formulation are 𝑆𝑖𝑡  variables and thus the problem can be 
decomposed over orders (𝑖 = 1. . 𝑁) or over time periods (𝑡 =
1. . 𝑇) or over both of them.  

B. Time-based relax-and-fix heuristic 

In the time based decomposition, integrality constraints are 
imposed on variables 𝑆𝑖𝑡  (∀ 𝑖 = 1. . 𝑁) within a decision time 
interval, which is an internally rolling horizon. In any iteration 
of the relax-and-fix heuristic, the time horizon is partitioned 
into three intervals: a decision time window, a frozen interval 
preceding the decision time window and consisting of periods 



with variables that are fixed, and an approximation interval 
after the decision window where the binary constraints are 
relaxed. The two main parameters of this approach are: the size 
of the decision time interval (𝛼) and the size of the frozen 
interval (𝛽 ≤ 𝛼). In any iteration, the decisions of the first 𝛽 
periods in the current decision window will be frozen in the 
following iteration. Figure 1 illustrates the three sub-intervals 
for 𝛼 = 5 and 𝛽 = 3. In each iteration, an optimal or heuristic 
solution is obtained using a MILP solver. Two stopping 
parameters need to be determined for the heuristic: the 
minimum integrality gap and the maximum allowed CPU time 
in each iteration. 

C. Order-based relax-and-fix heuristic 

The main difference between the order-based 
decomposition and the time-based decomposition is that 
intervals are naturally identified in the latter because of the 
chronological nature of time periods, while a sequence of orders 
(𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑁}) needs to be determined. Then the relax-and-
fix heuristic is applied on a given sequence and results in a 
given feasible solution of the problem instance. Several 
sequences of orders are constructed and evaluated. 

An initial sequence is obtained using a Most Profitable First 
(MPF) priority rule. In the MPF rule, initially, all orders are 
supposed to be released and satisfied on their earliest due date, 

which yields a unit profit of 𝜋𝑖
′ = 𝜋𝑖 − 𝑟(𝜏𝑖) for each order 𝑖 

and the sequence (𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑁}) is obtained by sorting the 

orders in decreasing order of unit profit 𝜋𝑖
′ using QuickSort 

function as shown in Algorithm 1. For this sequence, the relax-
and-fix heuristic is applied in such a way that the decision 

subset corresponds to the first 𝛼′ orders. The frozen subset is 

𝛽′ ≤ 𝛼′ and the decisions corresponding to the rest of the 
orders belong to the relaxed subset. 

After updating the best solution, other sequences are 
constructed using the reversals heuristic, subroutine Reverse. 
When the initial sequence is reversed two-by-two, the resulting 
new sequences are: 𝐼 = {𝑖2, 𝑖1, … , 𝑖𝑁}, 𝐼 = {𝑖1, 𝑖3, 𝑖2, … , 𝑖𝑁}, …, 
𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑁 , 𝑖𝑁−1}. The best reversal and solution value are 
saved. The best sequence in the two-by-two reversal is used as 
a starting point for a three-by-three reversal. Supposing that the 
best solutions obtained for sequence {𝑖1, 𝑖3, 𝑖2, 𝑖4, 𝑖5, … , 𝑖𝑁} in 
the two-by-two reversals, in the three-by-three reversals, the 
generated sequences are {𝑖2, 𝑖3, 𝑖1, 𝑖4, 𝑖5, … , 𝑖𝑁}, 
{𝑖1, 𝑖4, 𝑖2, 𝑖3, 𝑖5, … , 𝑖𝑁}, {𝑖1, 𝑖3, 𝑖5, 𝑖4, 𝑖2, … , 𝑖𝑁},.., and 
{𝑖1, 𝑖3, 𝑖2, 𝑖4, 𝑖5, … , 𝑖𝑁 , 𝑖𝑁−1, 𝑖𝑁−2}. The best sequence in the 

three-by-three reversals is the starting point of a four-by-four 
reversals and so on. 

Algorithm 1: RerversalsHeuristic 

  BestSequence ← QuickSort(Orders); 

  BestProfit ← −∞  

  for Reversals ← 1 until N do 

   if Reversals = 1 then MaxReversals ← 1 

    else  MaxReversals ← N-Reversals+1 

    end-if 

    ReversalBestProfit  ← −∞ 

    for ReversePoint ← 1 until MaxReversals do 

     for i ← 1 until N do S[i] ← 0; 

     flag ← true; 

     if (Reversals > 1) then 
    Reverse(BestSequence,ReversePoint, 

     ReversePoint+Reversals-1) 

     end-if 

     SequenceBestProfit ←  −∞ 

   Relax-and-fix(𝛼′, 𝛽′, sequence) 

     if (SequenceBestProfit ≥ ReversalBestProfit) then 

      ReversalBestProfit ← SequenceBestProfit; 

      UpdateBestSequence(); 

     end-if 

    end-for 

    if (ReversalBestProfit ≥ BestProfit) then 

     BestProfit ← ReversalBestProfit; 

     UpdateBestSequence(); 

    end-if 

   end-for 

The Relax-and-fix(𝛼′, 𝛽′) subroutine (Algorithm 2) 
forces the integrality condition on binary variables of the first 
𝛼′ orders with the highest profit 𝜋′ and relaxes the other 
binary variables. Then, it permanently fixes the solution for the 

first 𝛽′ variables (𝛽′ ≤ 𝛼′), sets integrality constraints on 

variables indexed from 𝛽′ + 1 to 𝛽′ + 𝛼′ and relaxes 

integrality for orders after 𝛽′ + 𝛼′ + 1. The process is 
repeated until the last order in the sorted list is reached. 
Furthermore, compared to simple relax-and-fix heuristics, our 
heuristic applies the reversals function and explores more 
possible solutions. The heuristic’s main inputs are the number 
of orders for which the integrality constraints are to be respected 
in each iteration (𝛼′) and the number of orders for which the 
binary variables are to be permanently fixed in each iteration 
(𝛽′). The first step of the heuristic calculates the number of 

Figure 1. The different intervals in a time-based decomposition of a relax-and-fix heuristic 



iterations based on these two parameters. Then, starting from 
the beginning of the sequence of the sorted orders, the sub-
problems are solved until all binary decision variables are fixed. 

Algorithm 2: Subroutine Relax-and-Fix(𝛼′, 𝛽′, Sequence) 

  Input: 𝛼′, 𝛽′ 
  Caculate NumIter 

  for i ← 1 until NumIter 

   Relax binary variables of orders after the last 𝛼′ interval 

   Solve the sub-problem 

   Permanently fix 𝑆𝑖𝑡  variables for orders within 𝛽′ 
  end-for; 

V. EXPERIMENTAL RESULTS 

This section evaluates the efficiency of the proposed 
heuristics. The optimization models as well as the heuristics 
have been implemented in Xpress-IVE version 1.24 and run on 
a PC with intel CORE i7-2.4Ghz microprocessor and 16GB 
RAM. 

A. Generated data sets 

Data sets were generated with 𝑁 =20 to 500 orders received 
for a period of 𝑇 =10 to 100 periods. The production related 
unit costs are 𝑟𝑡 =$3, while 𝑐𝑡 =0, 𝑤𝑡 =$35, and ℎ𝑡 =$15, ∀𝑡. 
The unit profit is equal to 100, 110 and 115 for small, medium, 
and large size orders, respectively. The earliest delivery date of 
each order is generated from a uniform distribution between 1 
and 𝑇. The size of each order is generated from a uniform 

distribution between 
1

2
�̅� and  

3

2
�̅�, where: 

�̅� =
𝑇 × 𝑏𝐾 × 𝐷𝐶

𝑁
 

𝐷𝐶 is the total orders over the nominal capacity for the whole 

planning horizon, i.e. 𝐷𝐶 =
∑ 𝑞𝑖𝑖

𝑇×𝑏𝐾
. 

The lost sale cost per unit is: 𝑙𝑖 = 1.2 × 𝜋𝑖. The intercepts 
and the slopes of the clearing function are defined as (𝑎𝑘 , 𝑏𝑘) =
(0.5, 0), (0.069, 136), (0.036, 154.8), (0, 180) for 𝑘 =
1, . . . ,4. The analysis of the performance of the heuristics was 
based mainly on capacity tightness determined by coefficient 

𝐷𝐶 =
∑ 𝑞𝑖𝑖

𝑇×𝑏𝐾
 and order time window Δ𝑖 = 𝑓𝑖 − 𝑒𝑖 + 1. DC was 

varied between 0.6 (loose capacity) and 1.2 (demand exceeding 
capacity). To analyze the impact of due date flexibility, Δ𝑖  was 

set to Δ
𝑖

∈ {2, 4, 6}. 

B. Analysis of the performance of the heuristics 

1) Preliminary tests 
The PP-OA-FDD model was solved using the time-based 

relax-and-fix heuristic and using order-based relax-and-fix 
heuristic (Algorithm 1). The parameters used for each heuristic 
are summarized in Table 1. The numerical experiments were 
carried out on both small size and large size instances. The 
stopping criterion used in each iteration of the two heuristics is 
the minimum integrality gap, which is set to 0.1%.  

Preliminary tests were carried out on small size problems. 
In these problems there are 𝑁 = 20 orders to be scheduled over 
a planning horizon of 𝑇 = 10 periods. Order time windows 

were set to Δ
𝑖

∈ {2, 4, 6} and capacity tightness was set to 

𝐷𝐶 ∈ {0.6, 0.9, 1.2}. For each setting (given values of Δ
𝑖
 and 

𝐷𝐶), five instances were randomly generated. The performance 
of the heuristics is measured using the gap between the optimal 
solution (𝑂𝑝𝑡) obtained using the solver and the heuristic 
solution (𝑆𝑜𝑙): 

𝐺𝑎𝑝 = 100 ×
𝑂𝑝𝑡 − 𝑆𝑜𝑙

𝑂𝑝𝑡
 

Table 2 shows the gaps obtained by the heuristics. The CPU 
times are shown on the last raw of the table. 

Table 1. Parameters of the heuristics 

 Order-based 
heuristic 

Time-based 
heuristic 

 RF-N-
10-8 

RF-N-
15-10 

RF-
T-5-3 

RF-T-
10-8 

𝛼 10 15 5 10 

𝛽 8 10 3 8 

Min integrality gap 0.1% 0.1% 0.1% 0.1% 

The RF-T-10-8 heuristic outperforms all other heuristics in 
terms of quality of solutions. In fact, for some parameter 
settings it is able to find the optimal solutions for all the 
generated instances. However, it requires the largest CPU time 
on average when compared to other heuristics. Heuristic RF-T-
5-3 might be considered as a good compromise between CPU 
time and solution quality. The solver on the other hand requires 
an average CPU time of 6.25 seconds and a maximum CPU 
time of 900 Seconds (maximum allowed execution time) to find 
the optimum, while RF-T-10-8 heuristic requires an average 
time of 2.57 Seconds and a maximum time of 97 Seconds to 
reach an average gap of 0.01 %. 

 Table 2. Gaps and CPU times for small size problems 

 Para-
meter 

Value RF-N-
10-8 

RF-N-
15-10 

RF-T-
5-3 

RF-T-
10-8 

Gap 
(%) 

Δ
𝑖
 2 1.09 0.36 0.46 0.00 

4 1.80 0.40 0.16 0.01 

6 2.02 0.39 0.19 0.01 

DC 0.6 0.14 0.15 0.06 0.02 

0.9 0.46 0.16 0.18 0.00 

1.2 4.30 0.84 0.57 0.00 

CPU (Seconds) 0.70 0.82 0.31 2.57 

2) Full factorial tests 
In Table 3, the first and second columns correspond to the 

three problem parameters and their values based on which the 
analysis was done. Problem size is identified by the number of 
time periods in the planning horizon and the number of orders 
(T-N), which range from 10 to 100 periods and from 20 to 500 
orders. The execution time of the solver when applied directly 
to the PP-OA-FDD formulation was limited to 900 Seconds. 
The last six columns in Table 3 present the average solution gap 
of two order-based relax-and-fix heuristics, two time-based 
relax-and-fix heuristics and the solver for a maximum CPU 
time of 900 Seconds (Column Solver 900s).  

Gap' = 100 ×
𝐵𝑒𝑠𝑡𝑈𝐵 − 𝑆𝑜𝑙

𝑆𝑜𝑙
 



Where 𝑆𝑜𝑙 is the solution obtained using the solution approach 
and 𝐵𝑒𝑠𝑡𝑈𝐵 is the best bound obtained using the solver. We 
also refer to Table 4 for a comparison of the average CPU times. 

As it can be expected, from Table 3, the solver provides 
better quality solutions than the heuristics for very small 
problems though it requires much more CPU times on average. 
For medium and large instances, the time-based relax-and-fix 
heuristics (RF-T-5-3 and RF-T-10-8) outperform the solver in 
terms of solution quality while requiring much less CPU time. 
For example, for problems with (𝑇, 𝑁) = (100,200), the solver 
requires 630 seconds to reach an average gap of 4.05%, while 
RF-T-5-3 obtains solutions with an average gap of 1.99% in less 
than 12 Seconds on average. 

For problems with a large number of orders, the order-based 
relax-and-fix heuristics are slower than the time-based 
heuristics as the number of sequences to be evaluated becomes 
large. The main reason behind constructing and evaluating 
several sequences is to search for sequences that would result 
in good quality solutions; yet, it can be seen from Table 3 that 
order-based heuristics results in relatively higher gaps when 
compared to the solver and time-based heuristics. Therefore, 
the time-based relaxed and fix heuristics are more suitable for 
solving this problem. 

It can also be seen from Table 5 that the more customer due 

date flexibility is allowed (increasing Δ
𝑖
) and the tighter is the 

capacity (increasing DC), the harder is the problem to solve. 

Table 3. Gaps (%) between the best bound and the best 
solution of the heuristics 

T-N RF-N-
10-8 

RF-N-
15-10 

RF-T-
5-3 

RF-T-
10-8 

Solver900 

10-20 1.63 0.38 0.27 0.01 0.00 

10-50 0.85 0.68 0.11 0.09 0.05 

20-40 1.94 1.47 0.55 0.51 0.35 

20-60 1.81 1.49 0.58 0.51 0.55 

10-100 0.96 0.83 0.14 0.15 0.09 

20-100 1.77 1.39 0.36 0.31 0.37 

50-100 3.74 3.21 1.59 1.44 2.58 

50-300 4.23 3.57 0.64 0.66 1.23 

100-200 5.68 5.01 1.99 1.89 4.05 

100-500 7.40 5.94 0.99 0.83 1.74 

 

Table 4. Average CPU time (in Seconds) for different 
problem sizes. 

T-N 
RF-N-
10-8 

RF-N-
15-10 

RF-T- 
5-3 

RF-T-
10-8 

Solver900 

10-20 0.70 0.82 0.31 2.57 6.25 

10-50 1.01 1.02 3.20 18.32 159.56 

20-40 1.74 2.68 0.99 6.22 198.08 

20-60 2.28 2.63 1.81 11.84 295.79 

10-100 2.60 2.18 4.56 29.48 402.95 

20-100 3.21 3.02 4.26 18.24 426.13 

50-100 8.51 8.46 4.25 19.63 520.39 

50-300 43.61 32.64 12.68 28.94 601.06 

100-200 31.18 33.38 11.32 22.94 630.62 

100-500 144.75 133.80 11.19 26.19 602.48 

 

Table 5. Effect of Δ
𝑖
 and DC on Gaps  

  RF-N-
10-8 

RF-N-
15-10 

RF-T-5-
3 

RF-T-
10-8 

Solver9
00s 

Δ
𝑖
 2 3.18 2.24 0.54 0.37 0.44 

4 3.06 2.50 0.74 0.64 1.05 

8 3.69 3.25 1.12 1.11 2.09 

12 4.77 4.38 1.44 1.47 3.23 

DC 0.6 0.69 0.43 0.14 0.13 0.00 

0.9 2.30 1.82 0.54 0.38 0.49 

1.2 6.81 5.67 1.69 1.61 3.27 

 

VI. CONCLUSION 

 Integrating production and sales decisions increases the 
competitiveness of manufacturing firms. In fact, by integrating 
production planning and order acceptance decisions companies 
can increase profit and in the same time customer satisfaction, 
by controlling delays and reducing them. Furthermore, 
negotiating flexible due dates allows companies to accept more 
orders and quote more reliable due dates to their customers. In 
this paper, we have proposed a mathematical programming 
formulation to model the integrated problem of production 
planning with load-dependent lead times, order acceptance, and 
flexible due dates. We quantified, through numerical 
experiments, the benefits of integration and due dates 
flexibility. For problems of realistic sizes, with a large number 
of planning periods and orders, the problem is very hard to solve 
in reasonable computational times. Therefore, two relax-and-
fix heuristics have been developed to tackle this issue of 
dimensionality. Numerical results show that the time-based 
relax-and-fix heuristics outperform the order-based relax-and-
fix heuristics and the direct application of a commercial solver 
as it provides better quality solutions in much less CPU times. 
Although the model presented in this paper considers more 
realistic behaviour of the capacity constraints, it still needs 
further improvements by considering other important issues 
related to production planning decisions such as setup costs, 
setup times and multi-products. Furthermore, faster solution 
approaches, which do not rely on the solution on integer linear 
programming problems need to be tackled and are currently 
under investigation. 
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