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Abstract—Vehicle stability control systems called ESP, vehicle
dynamics control (VDC), yaw stability control (YSC), and so
forth are important active safety systems used for maintaining
lateral stability of the vehicles under such adverse conditions.
This paper investigates the notion of virtual sensing which
is a promising concept for yaw stability control and is an
attractive option for vehicle manufactures as it reduces sensor
cost, maintenance, and machine downtime.

A frequent situation in automotive control applications is when
an unknown input needs to be estimated from available state
measurements. The virtual sensor proposed use measurements
of lateral acceleration, steering angle as unknown input signals
and provide the yaw rate angle estimate as output.
Stability conditions of this virtual sensor are given in terms of
Linear Matrix Inequalities (LMI). To illustrate the proposed
methodology, a linear bicycle model is considered. The ob-
server(virtual sensor) is confronted to data issued from the Callas
vehicle simulator.

Index Terms—Virtual Sensor, State Space, Modeling, Vehicle
Dynamics, Yaw-rate, Steering Angle.

I. INTRODUCTION

Road vehicle yaw stability control systems like electronic
stability program (ESP) are very important for the safety of
the driver and passengers during extreme lateral maneuvers
or during lateral maneuvers under adverse environmental
conditions like driving on snow or ice, sudden tire pressure
loss, or sudden side wind.These mechatronics systems used
for maintaining lateral stability of the vehicle, based their
calculations on measurements from sensors (accelerometers,
gyrometers, steering wheel angle, wheels position sensors
. . .). Nevertheless, some variables are actually unreachable to
measure (longitudinal acceleration, side slip angle,yaw rate,
tire/road forces. . .) Vehicle yaw rate is the key parameter that
needs to be known by a yaw stability control system. In this
paper, yaw rate is estimated using a virtual sensor

Some observers can be done to estimate these variables [1],
[2]. Researches are conducted to develop low cost sensors to
acquire tire/road forces [3], [4]. Such instrumentation has been
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considered especially by builders automotive [5], of Roule-
mentier [6] by SNR-NTN company [7], [8], with partners [9],
[10] or SKF company [11] of have show the feasibility of the
integration of forces measurements in a future generation of
affordable wheel bearing.

Since the experience of most drivers is limited to driving
within the linear range of vehicle handling behavior, It is
generally considered desirable to reduce the difference be-
tween the normal vehicle behavior and that at the limit. This
improves the chances of a typical driver to maintain control
of the vehicle in emergency situations. This goal can be
accomplished by active chassis control systems such as brake
control systems or active rear wheel steer. The purpose of
control is to bring the vehicle yaw rate response and/or the
vehicle slip angle into conformance with the desired yaw rate
and/or slip angle.

With this objective, this article presents a virtual sensor to
estimate simultaneously vehicle side slip angle, yaw rate and
the steering angle considered as an unknown input. The yaw
rate is considered as the only available measure.

The estimated state and unknown input can then be used as
input of actual ADAS (Advanced driver assistance systems).
Several studies were conducted to estimate the unknown inputs
the linear dynamical systems [12], [13], [14], [15] and [16].
Edwards and Spurgeon have proposed two methods based on
sliding mode observers for detect and estimate the sensor fault
[17].

The article of [18] uses a bicycle model to estimate the
center of gravity of a motor vehicle. [19] present this model,
a four wheel steering, for control side slip angle and yaw rate.

In this first study, a vehicle bicycle model [20] is used to
design the observers. The longitudinal speed of the vehicle
is supposed to be constant, lateral tires forces linear with
respect to side slip angle and sprung mass movements are
neglected. This kind of model is valid for low lateral dynamics
(|ÿ| < 0, 4g ). Observer is designed using the "unknown
input with unknown input is independent of the output"
framework [21], [22] and [23]. The gain of the observer is
computed by solving linear matrix inequalities [24] and [25].
The organization of the rest of the paper is as follows. In
Section 2 and its subsections presents the vehicle modeling and
dynamic virtual sensor design is explained. Simulation results
obtained using the virtual sensor are given, observer is tested



and confronted to data issued from the vehicle simulator Callas
distributed by Oktal company In Section 3, and the paper ends
with conclusions. Notations are explained in section VI.

II. VEHICLE DYNAMICS MODEL

Fig. 1. bicycle Model [26]

Lateral vehicle dynamics has been studied since the 1950s.
In 1956, Segel [20] presented a vehicle model with three
degrees of freedom in order to describe lateral movements
including roll and yaw. If roll movement is neglected, a simple
model known as the bicycle model is obtained. This model is
currently used for studies of lateral vehicle dynamics (yaw and
sideslip).

The bicycle model (1) used in this paper is obtained by ap-
plication of the fundamental principal of dynamics. Variables
are presented on Fig. 1. Inputs of model are lateral tire/road
forces projected onto the vehicle frame,The equations of this
model are described as follows:.{

β̇ = (Fyf + Fyr)/(VGMV )− ψ̇
ψ̈ = (LfFyf − LrFyr)/Izz

(1)

Using the assumptions of low lateral dynamics, small steer-
ing and side slip angle, lateral forces are proportional to the
tires side slip angles. They can be written as:{

Fyf = Dfβf
Fyr = Drβr

(2)

Tires side slip angles (front and rear) can be approximated
using kinematic relations. The side slip angle of front tires βr
is between P1 and Vf . The side slip angle of rear tires βr is
between P2 and Vr.{

βf = δ − β − Lf ψ̇
VG

βr = −β + Lrψ̇
VG

(3)

Linear tire forces are:{
Fyf = Df (δ − β − Lf ψ̇

VG
)

Fyr = Dr(−β + Lrψ̇
VG

)
(4)

III. LINEAR UNKNOWN INPUT OBSERVER WITH
UNKNOWN INPUT IS INDEPENDENT OF THE OUTPUT

The aims of the observer presented in this paper are to
calculate the vehicle lateral state variables and the steering
angle that is not measured. Assuming that the only available
measure is the yaw rate and we want to estimate center of
gravity side slip angle, yaw rate (states) and the steering angle
(unknown input). The proposed observer will be an linear
Unknown Input Observer with Unknown Input is Independent
of The Output UIO.

A. State-space model

By substituting Fyf and Fyr (4) in equation (1), the dy-
namics of the bicycle model can be written as a linear system
with unknown input:

Σ

{
ẋ = Ax+Rδ
y = Cx

(5)

In this expression,

x =

(
β

ψ̇

)
is the state vector, δ is the unknown input and

y = ψ̇ is the output vector. A is the state matrix, R is the
input matrix associated with the unknown input, C is the
observation matrix.

A =

( −Df−Dr

MV VG

LrDr−LfDf

MV V 2
G

− 1

LrDr−LfDf

Izz

−L2
rDr−L2

fDf

IzzVG

)

R =

(
Df

MV VG
LfDf

Izz

)

C =
(
0 1

)
B. Observer design

It often happens that all state variables of a system are not
accessible to measurement or input not measurable because of
very expensive sensors or absence of technology. The idea is to
rebuild the state and the input not measurable from information
available that is to say the output and known inputs.

An unknown input observer (UIO) estimates simultaneously
the state x and the unknown input δ by using the available
measurements that constitute the output y (Fig. 2).

Fig. 2. Unknown inputs observer principle

For the linear time invariant (LTI) systems, a lot of obser-
vation techniques can be applied (Kalman filter, Luenberger
observer, sliding mode observer, ...). To be able to characterize
the robustness performances, the gains of observer UIO are
obtained by solving a Linear Matrices Inequalities problem.



The full order observer ( [21] and [22]) for system (5) can
be expressed as:

The system (5) respects the following assumptions :
• The unknown inputs are not involved in the measure.
• The number of unknown inputs is less or equal to the

number of measures.
• The measure is one of the state variables..
• The matrix R is full column rank Rank(R) = 1.
An unknown input observer exists if and only if the system

(1) is detectable (observable) and the number of unknown
inputs less than or equal to the number of measures [23].

The observability matrix of this new system is written as:

O =

(
C
CA

)
The observability matrix (O) is full rank (rank(O) = 2), so
the system (5) is observable.

It is noted that (LrDr 6= LfDf ) is always available.
The numerical value of the determinant of this matrix in the

case of the studied vehicle is -32.3171.

C. Observer design UIO with Unknown Input is Independent
of The Output

The full order observer ( [23], [27], [12] and [22]) for
system (1)can be expressed as:

obs

{
ż = Nz + Ly
x̂ = z − Ey (6)

Where z is the dynamic of the observer. x̂ =
(
β ψ̇

)T
is the

observed state. N , L and E are unknown matrices which must
be determined such that x̂ will asymptotically converge to x.

Define the observer reconstruction error by:

e = x− x̂ = z − x− Ey

Then, the dynamic of this observer error is:

ė = (I + EC)(Ax+Rδ)− (Nx̂+ (LC +NEC)x)

Let
P = I + EC (7)

Then, the observation error dynamic is

ė = Ne+ PRδ + (PA−NP − LC)x (8)

The estimation error converges asymptotically to 0 if and
only if the matrices N , L and E are choose to satisfy the
following conditions: N is a stable matrix (Hurwitz matrix)

PR = (I + EC)R = 0
LC = PA−NP

(9)

Equation (8) reduces to the homogeneous equation

ė = Ne (10)

The following paragraphs present the determination of ma-
trices N , E and L satisfying the constraints (9).

1) Matrix E:
This matrix E is calculated using the second equation of
system (9), the numerical solution of this equation is based on
the calculation of the pseudo inverse of matrix CR, a possible
solution is:

E = −R(CR)T [(CR)(CR)T ]−1 (11)

From equations (7) and (11), the matrix P can then be
expressed as:

P = I −R(CR)T [(CR)(CR)T ]−1C (12)

2) Matrix L:
The matrix L is determined from the third equation (9).

LC − PA+NP = 0⇒ N(I + EC) + LC − PA = 0

Then
N = PA−KC (13)

With
K = (PA−KC)E + L (14)

Therefore, the matrix L is given by:

L = K(I + CE)− PAE (15)

3) Matrix N :
Determining the matrix L requires the determination of the
matrix N (matrix K).

The Matrix L is chosen so that the observation error (10)
is asymptotically stable.

Using the Lyapunov theorem, the convergence of the ob-
server is guaranteed if there exists a symmetric positive matrix
X that the Lyapunov function V (e) = eTXe presents the
following properties:

∀e 6= 0

{
V (e) > 0

V̇ (e) < 0

This can be reformulated using equation (10):{
X > 0
NTX +XN < 0

Applying the Schur complement [24], [25](
−X 0

0 NTX +NX

)
< 0

Since N = PA−KC (equation (13)), which allows:(
−X 0

0 (PA−KC)TX +X(PA−KC)

)
< 0 (16)

Noticing that the inequality (16) is bilinear compared to
the variables K and X . A resolution method is to conduct a
change of variable:

W = XK

The linear matrix inequalities system (16) can be written as:(
−X 0

0 (PA)TX +X(PA)− (CTWT −WC)

)
< 0



The gain matrix is obtained by first solving the LMI with
respect to X and W . In a second time, K is determined by:

K = X−1W (17)

Then, the matrices L and N is written:{
N = PA−X−1WC
L = X−1W (I + EC)− PAE (18)

4) Estimation of unknown input:
The unknown input δ can be expressed from the output of
system (5):

δ = R+(ẋ−Ax) (19)

If state x is known, we can estimate δ (steering angle) from
equations (19). What gives, when we replace x̂ (6) by its
expression:

δ = R+(ż − Eẏ −Ax̂)

In practice the derivative can be approximated by the
formula:

sY (s) ' s

1 + τs
Y (s)

Where s the Laplace operator and τ is a real number chosen
to have ẏ ' sy , so τ must be small compared to the time
constraint of the system to determine.

5) In summary:
To summaries, the observer linear Unknown Input Observer
with Unknown Input is Independent of The Output UIO
allows calculating simultaneously vehicle side slip angle, yaw
rate and steering angle (unknown input) by using front lateral
tire forces. It’s written

UIO



ż = Nz + Lψ̇(
β̂
˙̂
ψ

)
= z − Eψ̇

δ̂ = R+

(
ż − E s

1 + τs
ψ̇ −A

(
β̂
˙̂
ψ

)) (20)

IV. NUMERICAL RESULTS

A. Vehicle simulator

Callas is a realistic vehicle simulator software distributed
by Oktal company (http://www.oktal.fr). According to [28], it
has been validated by car manufacturers and French research
institutions including INRETS ("Institut national de recherche
sur les transports et leur sécurité"). Callas is a physical based
model that takes into account numerous aspects among which
vertical dynamics (suspension, tires, road profile), kinematics,
elasto-kinematics, tire adhesion, aerodynamics, . . .

B. Simulation environment

Data used to evaluate observer performance are issued from
the Callas simulator and the simulation environment is Matlab-
Simulink.

Parameterization of open-loop model (5) used in the con-
struction of observers is verified using a linear stationary
bicycle model, whose input is the steering angle measured
and considered as known δm. This model (5) is called OLM
in the paper.

The results of observer UIO (20) is compared with the
outputs of the simulator CALLAS.

The observer has been tested in the case of an ISO double
lane change at 40km/h and 90km/h. Initial conditions of the
model and observers states are zero.The route to the lateral
strain of the vehicle is given in Fig. 3.

C. Vehicle parameters

• Front tire cornering stiffness: Df = 96000 [N.rad−1].
• Rear tire cornering stiffness: Dr = 69500 ∗ 2 [N.rad−1].
• Half-wheelbase front: Lf = 1.1824 [m].
• Half-wheelbase rear: Lr = 1.5176 [m].
• Total vehicle mass: MV = 1683 [kg].
• Yaw inertia: Izz = 3015 [kg.m2].

Fig. 3. Chicane ISO: positioning corridors.

D. Yaw Rate as "measure"

Fig. 4. Yaw Rate for ISO double lane change 40km/h. Callas simulation
compared with open-loop model (5).



Fig. 5. YawRate for ISO double lane change 90km/h. Callas simulation
compared with open-loop model (5).

yaw rate of the vehicle (bicycle model) is given in Fig. 4
for the test at 40km/h and in Fig. 5 for the test at 90km/h.

These figures illustrate the validity domain of the linear
bicycle model. At 40km/h, the lateral acceleration is low and
the model is representative. On the other hand, at 90km/h,
tires are positioned in their transient zone, model is less
representative. For this test, the maximum lateral acceleration
is 5m.s−2.

E. ISO Double lane change 40km/h

Fig. 6. Observer : side slip angle and steering angle estimations for ISO
double lane change 40km/h. Callas simulation compared with unknown input
observers UIO (20). Recall that the steering angle is not measured.

Estimations of vehicle side slip angle, yaw rate (state
variables) computed by observer UIO are compared to the
values issued from the Callas simulator used here as reference.
The estimation of the steering angle (the unknown input) is
compared to the reference computed by the virtual driver of the
simulator. The side slip angle, yaw rate and unknown steering
is treated on Fig. 6. This indicates that not measured states and
the unknown input are correctly calculated by observer based
on yaw rate measures. However, it is noteworthy that observer
(and the underlying open-loop model) under estimated the side
slip angle. It is important to remind here that the steering angle
is supposed not measured but is well computed.

F. ISO Double lane change 90km/h

Fig. 7. Observer : side slip angle and steering angle estimations for ISO
double lane change 90[km/h]. Callas simulation compared with unknown
input observers UIO (20). Recall that the steering angle is not measured.

For the ISO double lane change test at 90km/h, vehicle
side slip angle is presented and unknown steering angle on
Fig. 7 This shows the good performances for observer for all
estimations. The used tire model (linear and constant cornering
stiffness) reached its representative limits. This over estimation
is amplified by observer. Performances on yaw rate estimation
of their part are enhanced. Computation of the unknown
steering is quite good.

G. Errors of estimates

The error of the observer UIO for estimate side slip angle,
yaw rate and steering angle of an ISO double lane change at
40 and 90km/h data by Fig. 8 and Fig. 9.



Fig. 8. Errors of Observer : Errors estimates of side slip angle and steering
angle for ISO double lane change 40[km/h]. Recall that the steering angle
is not measured.

1) ISO Double lane change 40km/h: The maximum error
of estimation of the side slip angle is of order ' 0.15[deg],
obtained to t = 11.97[s], established by the observer. The
maximum error of estimation of the steering angle is of
order ' 0.33[deg], obtained to t = 11.13[s], established by
the observer. The comparison of these errors, issued by the
observers to unknown inputs, shows that we obtain a better
estimate of states (side slip angle, yaw rate) where the observer
UIO and the best estimate of the unknown inputs (steering
angle) is obtained by the observer from UIO.

2) ISO Double lane change 90km/h: 1.2[deg] obtained to
t = 12[s] is maximum error of estimation as the side slip angle
(β) issued by observer. The maximum error of estimation of
the steering angle (δ) is of order ' 0.66[deg], obtained to
t = 10.5[s], established by the observer UIO. The comparison
of these errors, issued by the observers to unknown inputs,
shows that we obtain a better estimate with observer UIO for
speed yaw.

V. CONCLUSION

In this paper we have presented a steering angle estimator
based on a recently proposed direct approach for the design of
virtual sensors. Current virtual sensors for steering angle esti-
mation based on yaw stability control are used in the electronic
stability control (ESC) system for diagnostic International
Journal of Vehicular Technology. The obtained steering virtual
sensor has been tested on number of different manoeuvres,

Fig. 9. Errors of Observer: Errors estimates of side slip angle and steering
angle for ISO double lane change 90[km/h]. Recall that the steering angle
is not measured.

including double lane change using a linear bicycle model
at constant speed and a linear tire model have been used to
characterize the vehicle lateral dynamics. This model is valid
only if the lateral dynamics are low. But, the LTI framework
makes easier the design of unknown input observers.This
kind of observers allows not only compute variables usually
measured (yaw rate and steering wheel angle) but also the
side slip angle. The obtained results showed that the proposed
linear estimator is able to provide a good steering angle
estimation in a large range of operation and the proposed yaw
stability controller is expected to improve yaw stability within
linear tire regions. Gain of the observer has been computed by
solving linear matrix inequalities.This methodology provides a
robust design (in a future work). Finally, the designed virtual
sensor was tested using data issued from the Callas vehicle
simulator and the results were found to be quite satisfactory.

VI. NOTATIONS

Df : Front tire cornering stiffness [N.rad−1]
Dr : Rear tire cornering stiffness [N.rad−1]
Lf : Half-wheelbase front [m]
Lr : Half-wheelbase rear [m]
Izz: Yaw inertia [kg.m2]
MV : Total vehicle mass [kg]
VG : Norm of speed of center of gravity [m.s−1]
ψ̇ : Yaw rate [rad.s−1]
Fyf : Front lateral tire force [N ]



Fyr: Rear lateral tire force [N ]
β : Center of gravity side slip angle [rad]
βf : Front wheel side slip angle [rad]
βr : Rear wheel side slip angle [rad]
δ: Front wheel steering angle [rad]
σf : Front relaxation length [m]
σr : Rear relaxation length [m]
x̂: Estimation of x
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