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Abstract—Most of the numerical studies of rotary lip seal are 

performed by considering lip or shaft as smooth surfaces. 

Although this assumption is far from practice, it is, the best 

approach to avoid the transient term of Reynolds equation.  

In the present work, Reynolds equation was resolved by 

taking into account: the roughness of the both surfaces and also 

the cavitation effect. In order to investigate the shaft roughness 

effect, an implicit with "finite differences" was used. A 

comparison was made between results of the current numerical 

results and the finite volume method published in the 

international literature. 

Numerical simulations show that the shaft roughness affects 

significantly the friction torque, the leakage and the load support 

of the lip seal. 
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I. INTRODUCTION  

     The lip seals are the dynamic sealing device the most used 

in the industry. Since the seventies, it has been shown that 

under steady state conditions, a lubricating film separates the 

lip and the shaft surfaces. 

Numerically and experimentally, it has been proved that 

the asperities of the shaft and lip produce a hydrodynamic 

force that carries the lip surface. Indeed, when the liquid is 

moved over each asperity, the film thickness varies and 

produces a pressure elevation on the upstream side, and 

cavitation occurs on the downstream side. 

The resultant of the hydrodynamic pressure in the vicinity 

of the asperities generates the lift force which keeps the lip 

separated from the shaft. 
To understand the film behavior, several lubrication models 
were studied namely HD (Hydrodynamic) EHD 
(Elastohydrodynamic), TEHD (Thermo-Elastohydrodynamic), 
and VEHD (Visco-Elastohydrodynamic). 

In the transient condition, theoretically, it is tedious to couple 
the thermal phenomenon to the mechanical behavior of the lip 
(viscoelastomeric or elastomeric law). Indeed, if assuming 
shaft as smooth surface predicts easily the lip performance, 
with rough finish, several numerical limitations are to 

challenge; a lot of loops are used to stabilize solutions of 
energy equation, thereby the lip elasticity, the lubricant 
viscosity and also the active and non active zones. 

In this work we will investigate the effect of the shaft 
roughness on the rotary lip seal performance, through the HD 
modeling. This study resolves Reynolds equation [1] in the 
active and non-active zone by taking into the consideration the 
lip and shaft roughness. 

 A numerical analysis of the isothermal hydrodynamic 
lubrication was performed by using the implicit temporal 
scheme and the finite difference spatial method. The purpose of 
this paper is to identify the parameters related to shaft 
roughness that affects the lip seal life expectancy: 
hydrodynamic force, friction torque, leakage rate and to 
compare the results with those of Shen [2]. 

II. MODEL USED 

The lip seal and the sealing zone are shown in Figure 1. 
The rotating shaft is considered rough, and the lip seal is 
aligned [3]. In the practice, the ratio of width contact between 
lip and shaft by the perimeter is about 10

-6
. Such weak domain 

induces numerical difficulty to mesh and resolve Reynolds 
equation. In order to avoid this limitation a cyclic cell is 
considered. Indeed, the lip roughness is periodically distributed 
along the «x-axis » direction with a circumferential wavelength 
equal to «L» .Therefore; we just consider a single cell having a 
length «L» and an axial contact width « b » and multiply the 
local results by cell numbers to deduce the global 
performances. 

1. The film thickness 

The film thickness between the lip seal and the shaft is 
computed by subtracting the lip roughness h1, the shaft 
roughness h2. Because the full film lubrication is considered, it 
is important to note that the average film thickness h0 is 
considered so as to represent the gap separating the surfaces 
and also to neglect the contact between the asperities. Then, the 
expression of the film thickness [1] is given by (1): 

           h = h1(x, y)-h2(x, y, t) + h0                                  (1) 

 2.  Fluid mechanics 

The pressure field is described by Reynolds equation. The 
cavitation zones are assumed to be filled with a homogeneous 
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lubricant-air mixture. The film thickness is smaller than the 
radius of the shaft therefore the shaft curvature can be 
neglected. The Reynolds equation (2): 
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In the active zone (3): 

{  
         D = p, D ≥ 0  

F = 1        
                                                             (3)    

 

In the cavitation zone (not active) (4):        

{               D = r-h, D < 0
F = 0        

                                                      (4) 

     And    r =
ρh

ρ0
                                                                     (5) 

 Where “r” is the replenishment ratio, “ρ” is the lubricant 
density and “ρ0” is the air density.      

TABLE I.  NOMENCLATURE 

 
Nomenclature  

 

A1 half amplitude of lip surface fluctuation [m] 

A2 half amplitude of shaft surface fluctuation [m] 

b 
width of solution space (sealing zone) in axial (y) 

direction [m] 

D universal variable 

F Flag indicating cavitation zones 

L 
length of solution space in circumferential (x) direction 

[m] 

l11 lip surface wavelength in x direction [m] 

l12 lip surface wavelength in y direction [m] 

l21 shaft surface wavelength in x direction [m] 

l22 shaft surface wavelength in y direction [m] 

P Pressure [Pa] 

Pa Ambient pressure [Pa] 

Ps Lubricant pressure [Pa] 

Q 

 

reverse pumping rate [g/h] 

 

Ra average roughness height [m] 

U speed of shaft surface [m/s] 

W 

 

load support [N] 

 

x 

 

axial coordinate [mm] 

 

y 
circonferential coordinate [m] 

 

yb 

 

axial location of maximum circumferential 

shear deformation of lip [m] 

 

μ Viscosity [Pa·s] 

 

 Fig. 1. Lip seal structure and location of the tightness area 

III.  LIP AND SHAFT ROUGHNESS 

The surface roughness is considered as double sinusoidal 
function and the average film thickness is equal to 1μm. 
Thus, the lip roughness is modeled by (6): 

ℎ1(𝑥, 𝑦) = 𝐴1 cos (
2𝜋

𝑙11
(𝑥 − 𝑐𝑔)) cos (

2𝜋

𝑙12
𝑦)                       (6) 

 

where cg is shearing deformation of the lip, with: 

     {  
    cg = l11 ( 

2y

yb
-
y2

yb
2 )                           if  y < yb

cg = l11( 1-2yb + 2yby-y2 )          if  y ≥ yb

              (7) 

and yb represents the location of the maximum dry contact 
pressure (results of structural analysis with the commercial 
simulation software « Abaqus ») as shown in Figure 2.  

We assume that shaft roughness is given by: 

ℎ2(𝑥, 𝑦, 𝑡) = 𝐴2 cos (
2𝜋

𝑙21
(𝑥 − 𝑡 ∗ 𝑈)) cos (

2𝜋

𝑙22
𝑦)                 (8) 

The Reynolds equation is resolved by the finite differences 
method [4] using the algorithm shown in Figure 3. 

As soon as the Reynolds equation is solved, the lifting load 
is calculated by (9), the leakage rate by (10) and the friction 
torque by (11). 

 

 

 

 

 

 

 

 

Fig. 2. The maximum circumferential strain location [1] 



 

Fig. 3. Flowchart for the resolution of the Reynolds equation 

𝑊 = ∬(𝑝 − 𝑝𝑎)𝑑𝑥𝑑𝑦   (9)       𝑄 = ∫−
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1. Finite Differences model 

 
In this part the Reynolds equation is discretized using the 

finite difference approach.  

This method employs approximations to the partial 
derivatives then the area of study should be mesh.  

As previously cited the domain is a rectangle with “b” as 
length and “L” as width shown in Figure 3, thereby, we 
discretize cyclic cell to « (Nx-1)·(Ny-1) » regular elements. 
Where “Nx·Ny” nodes representing the hydrodynamic 
pressure. The time step is given by « Nt » partition throughout 
the time period. 

Therefore, we discretize the terms of the partial derivative 
using the Taylor-Young formulation: 

 

 

 

Fig. 4. Schematic representation Finite differences mesh 
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𝜕𝐷

𝜕𝑥
=
𝐷𝑛(𝑖) − 𝐷𝑛(𝑖 − 1)

𝛥𝑥
𝜕𝐷

𝜕𝑦
=
𝐷𝑛(𝑖) − 𝐷𝑛(𝑖 − 𝑁𝑥)

𝛥𝑦
 

𝜕𝐷

𝜕𝑡
=
𝐷𝑛(𝑖) − 𝐷𝑛−1(𝑖)

𝛥𝑡

                                                   (12) 

 

                                                                                             

 « i » is the index of  knot and « n » is the index of time. 

The boundary conditions is given by: at y=0: p=pa; at y=b: 
p=ps. 

 

Replacing the partial derivatives in Eq. 2 by their finite 
difference analogs given in Eq. 12, it yields: 

 -A · Dn(i) + B · Dn(i + 1) + C · Dn(i-1) + E · Dn(i + Nx) +

F · Dn(i-Nx) = G + H · Dn-1(i)                                            (14)                                                               

 

Where: 
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t=t+Δt 

No 

Convergence loop : k<kconv 

 

Calculation of D and F by solving the generalized 

Reynolds equation by the finite difference method 

Assign Dn=D and Assign Fn=F 

 

Does D 

converge? 

 F=0 or 1 ? 

Resume iteration 

k=k+1 

 
Yes 

Initialization of D0 and F0 

Loop time: t<tmax 
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The linear system is transformed to matrix formulation: 
[M].D + R={0}, where [M] is stiffness matrix given by A, B, 
C, E and F and [R] is second right member. 

In order to find the vector [D
n
] the second part of the 

(Eq15) is multiplied by the reverse of the pentadiagonal matrix 
[A (i, n)]. Then we conclude the pressure values: if « D 

n
 (i) » 

is positive the pressure « P
n 
(i) » takes the value of « D 

n
 (i) » if 

not the pressure is nil since it’s the cavitation pressure. At this 
time we start computing the load support, the reverse pumping 
rate and the friction torque by the expressions given above 
(Eq.9, 10 and 11).  

IV. VALIDATION CODE 

The problem parameters are b=0.5.10
-4

 m, L=0.5.10
-4

 m, μ= 
2.5.10

-2
 Pa·s, ps=1.02.10

5
 Pa, pa= ps=1.02.10

5
 Pa, A1=0.5.10

-6
 

m, l11=b, l12=L, l22=b/2, l21=L/2, yb =3b/4. A parametric study 
was made; in order to determinate the nodes number according 
to x-axis and y-axis. Indeed, by choosing Nx=30 and Ny=30 
the numerical results are stabilized. 

The results are computed with program set on the 
calculation software Matlab. To validate our numerical study, 
the formulation in finite volumes supplied by Shen [2], was 
compared to the current model. 

Figure.5 represents the variation of time averaged load 
support divided by W0 (the time averaged load support for a 
smooth shaft surface during a period) according to the variation 
of roughness of the shaft surface. We notice that when 
Ra(shaft) is 5% of Ra(lip), the load support rises significantly 
by 25% and even if we increase the shaft roughness Ra(shaft) 
the load support stills considerable in comparison with the one 
of the smooth shaft. 

Figure.6 shows the variation of the reverse pumping rate 
according to the variation of roughness .When Ra(shaft) is 5% 
of Ra(lip) the reverse pumping rate is increased by 13.5% 
above Q0 (the reverse pumping rate for a smooth shaft surface), 
and even if we increase the shaft roughness Ra(shaft) the 
reverse pumping rate stills significant in comparison with the 
one of the smooth shaft. 

We can also say that the roughness of the shaft has an effect 
on the time-averaged reverse pumping rate. 

 

 

 

Fig. 5. Effect of Shaft Surface on Load Support 

       Fig. 6. Effect of Shaft Surface on Reverse Pumping Rate 

 

The numerical results predict well the rotary lip 
performance comparing to finite volumes method given by 
Shen [2]. The differences are about 0.36% for the load support 
and 1.56% for the reverse pumping rate curve, as shown in 
figure.4 and figure.5. Thus, the current model is validated. 

In order to study the effect of shaft roughness on rotary lip 
seal performance, we consider two influencing parameters: the 
roughness shape and the wavelength according to x-axis and y-
axis.  

 

 

 



V. EFFECT OF THE SHAFT ROUGHNESS 

1. Effect of the shaft surface wavelength l21 and l22  

 
This part is about taking different cases of the shaft surface 

wavelengths, and presenting the variation of the load support 
and the reverse pumping rate in function of time. 

Figure.7 shows that by increasing « l21 » the averaged 
lifting load and reverse pumping fall. 

 

 

Fig. 7. Effect of Shaft Surface wave length in x direction on load support 

 

 

Fig. 8. Effect of Shaft Surface wave length in x direction on pumping rate 

 

Fig. 9. Effect of Shaft Surface wave length in y direction on load support 

  

Fig. 10. Effect of Shaft Surface wave length in y direction on pumping rate 

 

However, while changing the values of the shaft surface 
wavelength according to the “y” direction « l22 » », it is 
observed that the amplitude of load and reverse pumping are 
significantly increased and the averaged results are similar. 

Thus, the effect of the shaft surface wavelength according 
to the x direction « l21 » reduces the averaged reverse pumping 
rate and the load support though « l22 » fluctuates more the 
amplitude of reverse pumping and lifting load, however the 
averaged values are quite the same. 

 

 

 



2. Effect of the shaft  roughness form   

 
In order to investigate the effect of shaft roughness shape, 

we consider three cases as shown in figure.11: 

 SH#1: h21=h2(x,y,t)  given by equation (8) 

 SH#2: h22=(|h21(x,y,t)|+ h21(x,y,t)))/2 

 SH#3: h23=(-|h21(x,y,t)|+ h21(x,y,t)))/2 

 

 

 Fig.11. Shaft surface roughness profile  

 

Fig.12. Effect of Shaft Surface form on the load support  

 

 

Fig. 13. Effect of Shaft Surface form on the pumping rate 

For the second case we find that it raises both the load 
support and the reverse pumping rate contrary to the third case 
wish reduces the two parameters to 0. 

3. Effect of the shaft roughness on the friction torque 

 

The curves plotted in Figure 14, show the variation of the 
friction torque for the different cases mentioned below. It is 
remarkable that the shaft surface form or wavelengths 
fluctuations have the same effects, found for the load support 
or the reverse pumping rate, on the friction torque « C ». 

 SH#1: l21=l11/2 and l22=l12/2  

 SH#2: h22= (|h21(x,y,t)|+ h21(x,y,t)))/2 

 SH#3: h23= (-|h21(x,y,t)|+ h21(x,y,t)))/2 

SH#1 

SH#2 

SH#3 



 SH#4: l21=l11and l22=l12/2 

 SH#5: l21=2.l11 and l22=l12/2 

 SH#6: l21=l11/2 and l22=l12 

 SH#7: l21=l11/2 and l22=2.l12 

 

4. Numerical simulation 

 
The curves figured in figure.15 show the Hydrodynamic 

pressure plotted in function of the x and y coordinates, for  
different cases studied previously with an average film 
thickness h0=3 μm. The curves are elaborated on the golden 
software surfer 9. 

While changing the shaft surface wavelengths it is noticed 
that the pressure varies feebly. However, if the shaft surface 
form varies: for SH#2 the pressure rises significantly and the 
cavitation zone is smaller than the other cases, besides for 
SH#3 the cavitation zone is enormous which allow as to 
conclude that in this case the shaft and the lip are no more 
separated so this case should be avoided for a better use of the 
lip seal. 

 

 

Fig. 14. Effect of Shaft Surface form on the pumping rate 

 

 

 

 

 



 

 

 
Fig. 15. Hydrodynamic pressure distribution  (3D model) 

 

VI. CONCLUSION 

This work has twofold objectives, in one hand to compare 
numerical results between the finite differences and the volume 
differences approaches, in order to resolve Reynolds equation. 
This study confirms an accordance of the current model and the 
results published in the international literature. 

In the other hand, this work underlines the effect of shaft 
roughness on rotary lip seal performance. The simulations 
show that the wavelength according to “x-axis” decreases the 
reverse pumping rate, the load support and the friction torque. 
Nevertheless, the wavelength according to “y-axis” rises these 
parameters.  

In the same time, the shaft surface form has a great effect on lip 
seal behavior. Effectively, while taking only the positive 
bumps the reverse pumping rate, the load support and the 
friction torque rise significantly, yet if we consider only the 
negative bumps the parameters reduce and even approaches 
zero. Similarly, for the pressure distribution, while changing 
the shaft shape, the pressure decreases for the negative bumps 
however it raises significantly for the positive bumps. 
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